Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Commun Biol ; 7(1): 220, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388802

RESUMO

Dysfunctional Ca2+ signaling affects the myocardial systole and diastole, may trigger arrhythmia and cause transcriptomic and proteomic modifications in heart failure. Thus, synchronous real-time measurement of Ca2+ and force is essential to investigate the relationship between contractility and Ca2+ signaling and the alteration of excitation-contraction coupling (ECC) in human failing myocardium. Here, we present a method for synchronized acquisition of intracellular Ca2+ and contraction force in long-term cultivated slices of human failing myocardium. Synchronous time series of contraction force and intracellular Ca2+ were used to calculate force-calcium loops and to analyze the dynamic alterations of ECC in response to various pacing frequencies, post-pause potentiation, high mechanical preload and pharmacological interventions in human failing myocardium. We provide an approach to simultaneously and repeatedly investigate alterations of contractility and Ca2+ signals in long-term cultured myocardium, which will allow detecting the effects of electrophysiological or pharmacological interventions on human myocardial ECC.


Assuntos
Insuficiência Cardíaca , Proteômica , Humanos , Miocárdio , Acoplamento Excitação-Contração/fisiologia , Fenômenos Mecânicos
2.
Channels (Austin) ; 17(1): 2167569, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36642864

RESUMO

The CaV1.1 voltage-gated Ca2+ channel carries L-type Ca2+ current and is the voltage-sensor for excitation-contraction (EC) coupling in skeletal muscle. Significant breakthroughs in the EC coupling field have often been close on the heels of technological advancement. In particular, CaV1.1 was the first voltage-gated Ca2+ channel to be cloned, the first ion channel to have its gating current measured and the first ion channel to have an effectively null animal model. Though these innovations have provided invaluable information regarding how CaV1.1 detects changes in membrane potential and transmits intra- and inter-molecular signals which cause opening of the channel pore and support Ca2+ release from the sarcoplasmic reticulum remain elusive. Here, we review current perspectives on this topic including the recent application of functional site-directed fluorometry.


Assuntos
Canais de Cálcio Tipo L , Músculo Esquelético , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Acoplamento Excitação-Contração/fisiologia , Potenciais da Membrana/fisiologia , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Handb Exp Pharmacol ; 279: 3-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592225

RESUMO

In skeletal muscle, excitation-contraction (EC) coupling relies on the mechanical coupling between two ion channels: the L-type voltage-gated calcium channel (CaV1.1), located in the sarcolemma and functioning as the voltage sensor of EC coupling, and the ryanodine receptor 1 (RyR1), located on the sarcoplasmic reticulum serving as the calcium release channel. To this day, the molecular mechanism by which these two ion channels are linked remains elusive. However, recently, skeletal muscle EC coupling could be reconstituted in heterologous cells, revealing that only four proteins are essential for this process: CaV1.1, RyR1, and the cytosolic proteins CaVß1a and STAC3. Due to the crucial role of these proteins in skeletal muscle EC coupling, any mutation that affects any one of these proteins can have devastating consequences, resulting in congenital myopathies and other pathologies.Here, we summarize the current knowledge concerning these four essential proteins and discuss the pathophysiology of the CaV1.1, RyR1, and STAC3-related skeletal muscle diseases with an emphasis on the molecular mechanisms. Being part of the same signalosome, mutations in different proteins often result in congenital myopathies with similar symptoms or even in the same disease.


Assuntos
Canalopatias , Doenças Musculares , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canalopatias/genética , Proteínas Adaptadoras de Transdução de Sinal , Acoplamento Excitação-Contração/fisiologia , Músculo Esquelético/fisiologia , Doenças Musculares/genética , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio
4.
Adv Biol (Weinh) ; 7(5): e2200117, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36216583

RESUMO

Excitation-coupling (ECC) is paramount for coordinated contraction to maintain sufficient cardiac output. The study of ECC regulation has primarily been limited to cardiomyocytes (CMs), which conduct voltage waves via calcium fluxes from one cell to another, eliciting contraction of the atria followed by the ventricles. CMs rapidly transmit ionic flux via gap junction proteins, predominantly connexin 43. While the expression of connexin isoforms has been identified in each of the individual cell populations comprising the heart, the formation of gap junctions with nonmuscle cells (i.e., macrophages and Schwann cells) has gained new attention. Evaluating nonmuscle contributions to ECC in vivo or in situ remains difficult and necessitates the development of simple, yet biomimetic in vitro models to better understand and prevent physiological dysfunction. Standard 2D cell culture often consists of homogenous cell populations and lacks the dynamic mechanical environment of native tissue, confounding the phenotypic and proteomic makeup of these highly mechanosensitive cell populations in prolonged culture conditions. This review will highlight the recent developments and the importance of new microphysiological systems to better understand the complex regulation of ECC in cardiac tissue.


Assuntos
Acoplamento Excitação-Contração , Proteômica , Acoplamento Excitação-Contração/fisiologia , Miócitos Cardíacos/metabolismo , Ventrículos do Coração , Átrios do Coração , Conexinas/metabolismo
5.
J Gen Physiol ; 155(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36409218

RESUMO

The expression of the Huntingtin protein, well known for its involvement in the neurodegenerative Huntington's disease, has been confirmed in skeletal muscle. The impact of HTT deficiency was studied in human skeletal muscle cell lines and in a mouse model with inducible and muscle-specific HTT deletion. Characterization of calcium fluxes in the knock-out cell lines demonstrated a reduction in excitation-contraction (EC) coupling, related to an alteration in the coupling between the dihydropyridine receptor and the ryanodine receptor, and an increase in the amount of calcium stored within the sarcoplasmic reticulum, linked to the hyperactivity of store-operated calcium entry (SOCE). Immunoprecipitation experiments demonstrated an association of HTT with junctophilin 1 (JPH1) and stromal interaction molecule 1 (STIM1), both providing clues on the functional effects of HTT deletion on calcium fluxes. Characterization of muscle strength and muscle anatomy of the muscle-specific HTT-KO mice demonstrated that HTT deletion induced moderate muscle weakness and mild muscle atrophy associated with histological abnormalities, similar to the phenotype observed in tubular aggregate myopathy. Altogether, this study points toward the hypotheses of the involvement of HTT in EC coupling via its interaction with JPH1, and on SOCE via its interaction with JPH1 and/or STIM1.


Assuntos
Cálcio , Retículo Sarcoplasmático , Camundongos , Humanos , Animais , Cálcio/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Retículo Sarcoplasmático/metabolismo , Músculo Esquelético/metabolismo , Acoplamento Excitação-Contração/fisiologia
6.
J Cell Physiol ; 237(11): 4197-4214, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161458

RESUMO

The skeletal muscle CaV 1.1 channel functions as the voltage-sensor of excitation-contraction (EC) coupling. Recently, the adaptor protein STAC3 was found to be essential for both CaV 1.1 functional expression and EC coupling. Interestingly, STAC proteins were also reported to inhibit calcium-dependent inactivation (CDI) of L-type calcium channels (LTCC), an important negative feedback mechanism in calcium signaling. The same could not be demonstrated for CaV 1.1, as STAC3 is required for its functional expression. However, upon strong membrane depolarization, CaV 1.1 conducts calcium currents characterized by very slow kinetics of activation and inactivation. Therefore, we hypothesized that the negligible inactivation observed in CaV 1.1 currents reflects the inhibitory effect of STAC3. Here, we inserted a triple mutation in the linker region of STAC3 (ETLAAA), as the analogous mutation abolished the inhibitory effect of STAC2 on CDI of CaV 1.3 currents. When coexpressed in CaV 1.1/STAC3 double knockout myotubes, the mutant STAC3-ETLAAA failed to colocalize with CaV 1.1 in the sarcoplasmic reticulum/membrane junctions. However, combined patch-clamp and calcium recording experiments revealed that STAC3-ETLAAA supports CaV 1.1 functional expression and EC coupling, although at a reduced extent compared to wild-type STAC3. Importantly, STAC3-ETLAAA coexpression dramatically accelerated the kinetics of activation and inactivation of CaV 1.1 currents, suggesting that STAC3 determines the slow CaV 1.1 currents kinetics. To examine if STAC3 specifically inhibits the CDI of CaV 1.1 currents, we performed patch-clamp recordings using calcium and barium as charge carriers in HEK cells. While CaV 1.1 displayed negligible CDI with STAC3, this did not increase in the presence of STAC3-ETLAAA. On the contrary, our data demonstrate that STAC3 specifically inhibits the voltage-dependent inactivation (VDI) of CaV 1.1 currents. Altogether, these results designate STAC3 as a crucial determinant for the slow activation kinetics of CaV 1.1 currents and implicate STAC proteins as modulators of both components of inactivation of LTCC.


Assuntos
Cálcio , Acoplamento Excitação-Contração , Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sinalização do Cálcio/fisiologia , Cinética
7.
J Gen Physiol ; 154(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35980353

RESUMO

In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.


Assuntos
Cálcio , Doenças Musculares , Cálcio/metabolismo , Sinalização do Cálcio , Acoplamento Excitação-Contração/fisiologia , Humanos , Doenças Musculares/genética , Doenças Musculares/metabolismo , Mutação , Retículo Sarcoplasmático/metabolismo
8.
Protein Sci ; 31(5): e4311, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481653

RESUMO

Excitation-contraction coupling (ECC) is the physiological process in which an electrical signal originating from the central nervous system is converted into muscle contraction. In skeletal muscle tissue, the key step in the molecular mechanism of ECC initiated by the muscle action potential is the cooperation between two Ca2+ channels, dihydropyridine receptor (DHPR; voltage-dependent L-type calcium channel) and ryanodine receptor 1 (RyR1). These two channels were originally postulated to communicate with each other via direct mechanical interactions; however, the molecular details of this cooperation have remained ambiguous. Recently, it has been proposed that one or more supporting proteins are in fact required for communication of DHPR with RyR1 during the ECC process. One such protein that is increasingly believed to play a role in this interaction is the SH3 and cysteine-rich domain-containing protein 3 (STAC3), which has been proposed to bind a cytosolic portion of the DHPR α1S subunit known as the II-III loop. In this work, we present direct evidence for an interaction between a small peptide sequence of the II-III loop and several residues within the SH3 domains of STAC3 as well as the neuronal isoform STAC2. Differences in this interaction between STAC3 and STAC2 suggest that STAC3 possesses distinct biophysical features that are potentially important for its physiological interactions with the II-III loop. Therefore, this work demonstrates an isoform-specific interaction between STAC3 and the II-III loop of DHPR and provides novel insights into a putative molecular mechanism behind this association in the skeletal muscle ECC process.


Assuntos
Canais de Cálcio Tipo L , Canal de Liberação de Cálcio do Receptor de Rianodina , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Acoplamento Excitação-Contração/fisiologia , Músculo Esquelético/fisiologia , Isoformas de Proteínas/metabolismo
10.
Pflugers Arch ; 474(3): 267-279, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34820713

RESUMO

14-3-3 proteins (14-3-3 s) are a family of highly conserved proteins that regulate many cellular processes in eukaryotes by interacting with a diverse array of client proteins. The 14-3-3 proteins have been implicated in several disease states and previous reviews have condensed the literature with respect to their structure, function, and the regulation of different cellular processes. This review focuses on the growing body of literature exploring the important role 14-3-3 proteins appear to play in regulating the biochemical and biophysical events associated with excitation-contraction coupling (ECC) in muscle. It presents both a timely and unique analysis that seeks to unite studies emphasizing the identification and diversity of 14-3-3 protein function and client protein interactions, as modulators of muscle contraction. It also highlights ideas within these two well-established but intersecting fields that support further investigation with respect to the mechanistic actions of 14-3-3 proteins in the modulation of force generation in muscle.


Assuntos
Proteínas 14-3-3 , Acoplamento Excitação-Contração , Proteínas 14-3-3/metabolismo , Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo
11.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830262

RESUMO

Mag-Fluo-4 has revealed differences in the kinetics of the Ca2+ transients of mammalian fiber types (I, IIA, IIX, and IIB). We simulated the changes in [Ca2+] through the sarcomere of these four fiber types, considering classical (troponin -Tn-, parvalbumin -Pv-, adenosine triphosphate -ATP-, sarcoplasmic reticulum Ca2+ pump -SERCA-, and dye) and new (mitochondria -MITO-, Na+/Ca2+ exchanger -NCX-, and store-operated calcium entry -SOCE-) Ca2+ binding sites, during single and tetanic stimulation. We found that during a single twitch, the sarcoplasmic peak [Ca2+] for fibers type IIB and IIX was around 16 µM, and for fibers type I and IIA reached 10-13 µM. The release rate in fibers type I, IIA, IIX, and IIB was 64.8, 153.6, 238.8, and 244.5 µM ms-1, respectively. Both the pattern of change and the peak concentrations of the Ca2+-bound species in the sarcoplasm (Tn, PV, ATP, and dye), the sarcolemma (NCX, SOCE), and the SR (SERCA) showed the order IIB ≥ IIX > IIA > I. The capacity of the NCX was 2.5, 1.3, 0.9, and 0.8% of the capacity of SERCA, for fibers type I, IIA, IIX, and IIB, respectively. MITO peak [Ca2+] ranged from 0.93 to 0.23 µM, in fibers type I and IIB, respectively, while intermediate values were obtained in fibers IIA and IIX. The latter numbers doubled during tetanic stimulation. In conclusion, we presented a comprehensive mathematical model of the excitation-contraction coupling that integrated most classical and novel Ca2+ handling mechanisms, overcoming the limitations of the fast- vs. slow-fibers dichotomy and the use of slow dyes.


Assuntos
Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Modelos Teóricos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Sarcômeros/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Simulação por Computador , Cinética , Camundongos , Mitocôndrias/metabolismo , Parvalbuminas/metabolismo , Retículo Sarcoplasmático/metabolismo , Troponina/metabolismo
12.
Sci Rep ; 11(1): 15865, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354129

RESUMO

Muscular dystrophies are disorders characterized by progressive muscle loss and weakness that are both genotypically and phenotypically heterogenous. Progression of muscle disease arises from impaired regeneration, plasma membrane instability, defective membrane repair, and calcium mishandling. The ferlin protein family, including dysferlin and myoferlin, are calcium-binding, membrane-associated proteins that regulate membrane fusion, trafficking, and tubule formation. Mice lacking dysferlin (Dysf), myoferlin (Myof), and both dysferlin and myoferlin (Fer) on an isogenic inbred 129 background were previously demonstrated that loss of both dysferlin and myoferlin resulted in more severe muscle disease than loss of either gene alone. Furthermore, Fer mice had disordered triad organization with visibly malformed transverse tubules and sarcoplasmic reticulum, suggesting distinct roles of dysferlin and myoferlin. To assess the physiological role of disorganized triads, we now assessed excitation contraction (EC) coupling in these models. We identified differential abnormalities in EC coupling and ryanodine receptor disruption in flexor digitorum brevis myofibers isolated from ferlin mutant mice. We found that loss of dysferlin alone preserved sensitivity for EC coupling and was associated with larger ryanodine receptor clusters compared to wildtype myofibers. Loss of myoferlin alone or together with a loss of dysferlin reduced sensitivity for EC coupling, and produced disorganized and smaller ryanodine receptor cluster size compared to wildtype myofibers. These data reveal impaired EC coupling in Myof and Fer myofibers and slightly potentiated EC coupling in Dysf myofibers. Despite high homology, dysferlin and myoferlin have differential roles in regulating sarcotubular formation and maintenance resulting in unique impairments in calcium handling properties.


Assuntos
Disferlina/metabolismo , Acoplamento Excitação-Contração/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Disferlina/genética , Feminino , Masculino , Fusão de Membrana/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Contração Muscular/fisiologia , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/fisiopatologia
13.
Clin Neurophysiol ; 132(8): 1878-1886, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147924

RESUMO

OBJECTIVE: A role of the motor cortex in tremor generation in essential tremor (ET) is assumed, yet the directionality of corticomuscular coupling is unknown. Our aim is to clarify the role of the motor cortex. To this end we also study 'familial cortical myoclonic tremor with epilepsy' (FCMTE) and slow repetitive voluntary movements with a known cortical drive. METHODS: Directionality of corticomuscular coupling (EEG-EMG) was studied with renormalized partial directed coherence (rPDC) during tremor in 25 ET patients, 25 healthy controls (mimicked) and in seven FCMTE patients; and during a self-paced 2 Hz task in eight ET patients and seven healthy controls. RESULTS: Efferent coupling around tremor frequency was seen in 33% of ET patients, 45.5% of healthy controls, all FCMTE patients, and, around 2 Hz, in all ET patients and all healthy controls. Ascending coupling, seen in the majority of all participants, was weaker in ET than in healthy controls around 5-6 Hz. CONCLUSIONS: Possible explanations are that tremor in ET results from faulty subcortical output bypassing the motor cortex; rate-dependent transmission similar to generation of rhythmic movements; and/or faulty feedforward mechanism resulting from decreased afferent (sensory) coupling. SIGNIFICANCE: A linear cortical drive is lacking in the majority of ET patients.


Assuntos
Epilepsias Mioclônicas/fisiopatologia , Tremor Essencial/fisiopatologia , Acoplamento Excitação-Contração/fisiologia , Córtex Motor/fisiopatologia , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Eletroencefalografia/métodos , Eletromiografia/métodos , Epilepsias Mioclônicas/diagnóstico , Tremor Essencial/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Pflugers Arch ; 473(3): 417-434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33638008

RESUMO

Store-operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway that is present in virtually every cell type. Over the last two decades, many studies have implicated this non-voltage dependent Ca2+ entry pathway in cardiac physiology. The relevance of the SOCE pathway in cardiomyocytes is often questioned given the well-established role for excitation contraction coupling. In this review, we consider the evidence that STIM1 and SOCE contribute to Ca2+ dynamics in cardiomyocytes. We discuss the relevance of this pathway to cardiac growth in response to developmental and pathologic cues. We also address whether STIM1 contributes to Ca2+ store refilling that likely impacts cardiac pacemaking and arrhythmogenesis in cardiomyocytes.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Acoplamento Excitação-Contração/fisiologia , Humanos
15.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33411695

RESUMO

Loss-of-function (LOF) variants in SCN1B, encoding voltage-gated sodium channel ß1 subunits, are linked to human diseases with high risk of sudden death, including developmental and epileptic encephalopathy and cardiac arrhythmia. ß1 Subunits modulate the cell-surface localization, gating, and kinetics of sodium channel pore-forming α subunits. They also participate in cell-cell and cell-matrix adhesion, resulting in intracellular signal transduction, promotion of cell migration, calcium handling, and regulation of cell morphology. Here, we investigated regulated intramembrane proteolysis (RIP) of ß1 by BACE1 and γ-secretase and show that ß1 subunits are substrates for sequential RIP by BACE1 and γ-secretase, resulting in the generation of a soluble intracellular domain (ICD) that is translocated to the nucleus. Using RNA sequencing, we identified a subset of genes that are downregulated by ß1-ICD overexpression in heterologous cells but upregulated in Scn1b-null cardiac tissue, which lacks ß1-ICD signaling, suggesting that the ß1-ICD may normally function as a molecular brake on gene transcription in vivo. We propose that human disease variants resulting in SCN1B LOF cause transcriptional dysregulation that contributes to altered excitability. Moreover, these results provide important insights into the mechanism of SCN1B-linked channelopathies, adding RIP-excitation coupling to the multifunctionality of sodium channel ß1 subunits.


Assuntos
Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cricetulus , Acoplamento Excitação-Contração/genética , Acoplamento Excitação-Contração/fisiologia , Expressão Gênica , Células HEK293 , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteólise , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Transdução de Sinais , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/deficiência , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética
16.
Pflugers Arch ; 473(3): 317-329, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398498

RESUMO

In cardiac muscle, the process of excitation-contraction coupling (ECC) describes the chain of events that links action potential induced myocyte membrane depolarization, surface membrane ion channel activation, triggering of Ca2+ induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store to activation of the contractile machinery that is ultimately responsible for the pump function of the heart. Here we review similarities and differences of structural and functional attributes of ECC between atrial and ventricular tissue. We explore a novel "fire-diffuse-uptake-fire" paradigm of atrial ECC and Ca2+ release that assigns a novel role to the SR SERCA pump and involves a concerted "tandem" activation of the ryanodine receptor Ca2+ release channel by cytosolic and luminal Ca2+. We discuss the contribution of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ release channel as an auxiliary pathway to Ca2+ signaling, and we review IP3 receptor-induced Ca2+ release involvement in beat-to-beat ECC, nuclear Ca2+ signaling, and arrhythmogenesis. Finally, we explore the topic of electromechanical and Ca2+ alternans and its ramifications for atrial arrhythmia.


Assuntos
Função Atrial/fisiologia , Acoplamento Excitação-Contração/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Humanos
17.
PLoS One ; 15(4): e0231056, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302318

RESUMO

Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.


Assuntos
Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Miócitos Cardíacos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Humanos , Mamíferos , Sarcolema/genética , Sarcolema/fisiologia , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/fisiologia , Ovinos
18.
Am J Physiol Cell Physiol ; 318(3): C598-C604, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31967858

RESUMO

Excitation-contraction (EC) coupling is the coordinated process by which an action potential triggers cardiac myocyte contraction. EC coupling is initiated in dyads where the junctional sarcoplasmic reticulum (jSR) is in tight proximity to the sarcolemma of cardiac myocytes. Existing models of EC coupling critically depend on dyad stability to ensure the fidelity and strength of EC coupling, where even small variations in ryanodine receptor channel and voltage-gated calcium channel-α 1.2 subunit separation dramatically alter EC coupling. However, dyadic motility has never been studied. Here, we developed a novel strategy to track specific jSR units in dissociated adult ventricular myocytes using photoactivatable fluorescent proteins. We found that the jSR is not static. Instead, we observed dynamic formation and dissolution of multiple dyadic junctions regulated by the microtubule-associated molecular motors kinesin-1 and dynein. Our data support a model where reproducibility of EC coupling results from the activation of a temporally averaged number of SR Ca2+ release units forming and dissolving SR-sarcolemmal junctions. These findings challenge the long-held view that the jSR is an immobile structure and provide insights into the mechanisms underlying its motility.


Assuntos
Movimento Celular/fisiologia , Acoplamento Excitação-Contração/fisiologia , Miócitos Cardíacos/fisiologia , Retículo Sarcoplasmático/fisiologia , Fatores Etários , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Med Sci Sports Exerc ; 52(2): 354-361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31415447

RESUMO

PURPOSE: Muscle that lacks dystrophin, as in the mdx mouse, has a heightened sensitivity to eccentric (ECC) contraction-induced strength loss but an enhanced rate of recovery. However, the timeline and mechanisms underlying why mdx muscle recovers quicker have yet to be determined. We used an EMG approach to analyze plasmalemma electrophysiological function during and after ECC contraction-induced injury to test the hypothesis that loss of plasmalemmal excitability is a transient event in mdx muscle. METHODS: Mice were implanted with stimulating electrodes on the common peroneal nerve and EMG electrodes on the tibialis anterior muscle. Anterior crural muscles of anesthetized mice performed one or two bouts of 50 injurious ECC contractions, and recovery of maximal isometric torque and M-wave root mean square (RMS) were assessed after each bout. RESULTS: Maximal isometric torque and M-wave RMS were equally reduced 62% (P < 0.001) in mdx mice immediately after the initial ECC injury. For these mdx mice, M-wave RMS was still reduced at 2 d postinjury (P = 0.034) but was not different from preinjury values by 6 d (P = 0.106), whereas torque took up to 9 d to recover (P = 0.333). M-wave RMS did not change (P = 0.390) in wild-type mice in response to ECC injury, whereas torque decreased 35% (P < 0.001) and recovered by day 2 (P = 0.311). Results from the second bout of ECC contractions were similar to those observed during and after the initial injury. CONCLUSION: Functional dystrophin is necessary for excitation to occur at the plasmalemma during ECC contractions but is not essential for the complete recovery of plasmalemma electrophysiological function or maximal isometric strength.


Assuntos
Membrana Celular/fisiologia , Distrofina/fisiologia , Contração Muscular/fisiologia , Força Muscular/fisiologia , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Modelos Animais de Doenças , Eletromiografia , Acoplamento Excitação-Contração/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/fisiopatologia
20.
Mol Biol Cell ; 31(4): 261-272, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31877066

RESUMO

In skeletal muscle, proteins of the calcium release complex responsible for the excitation-contraction (EC) coupling are exclusively localized in specific reticulum-plasma membrane (ER-PM) contact points named triads. The CRC protein triadin (T95) is localized in the sarcoplasmic reticulum (SR) subdomain of triads where it forms large multimers. However, the mechanisms leading to the steady-state accumulation of T95 in these specific areas of SR are largely unknown. To visualize T95 dynamics, fluorescent chimeras were expressed in triadin knockout myotubes, and their mobility was compared with the mobility of Sec61ß, a membrane protein of the SR unrelated to the EC coupling process. At all stages of skeletal muscle cells differentiation, we show a permanent flux of T95 diffusing in the SR membrane. Moreover, we find evidence that a longer residence time in the ER-PM contact point is due to the transmembrane domain of T95 resulting in an overall triad localization.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canais de Translocação SEC/genética , Retículo Sarcoplasmático/metabolismo , Animais , Transporte Biológico , Diferenciação Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Difusão , Acoplamento Excitação-Contração/fisiologia , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/deficiência , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Translocação SEC/metabolismo , Retículo Sarcoplasmático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...